A. Axles. B. Wheel which is turned by treading. C. Toothed wheel D. Drum made of rundles E. Drum to which are fixed iron clamps. F. Second wheel G. Balls


Georgius Agricola (1494 - 1555)

Rare woodcut from De Re Metallica printed in 1560, which was the the most famous study on all aspects of mining and metallurgy, and one of the first technological books of modern times.  BOOK VI -But the largest machine of … Read Full Description


S/N: DRME-155–184126
Free Shipping

Within Australia

All orders ship free
within Australia

Rest of the World

Orders over A$300
ship free worldwide

See Shipping page for Terms & Conditions


Full Title:

A. Axles. B. Wheel which is turned by treading. C. Toothed wheel D. Drum made of rundles E. Drum to which are fixed iron clamps. F. Second wheel G. Balls




Georgius Agricola (1494 - 1555)


Hans Rudolf Manuel Deutsch 
(fl.1525 – 


In good condition.



Image Size: 

x 235mm
A. Axles. B. Wheel which is turned by treading. C. Toothed wheel D. Drum made of rundles E. Drum to which are fixed iron clamps. F. Second wheel G. Balls - Antique Print from 1556

Genuine antique



Rare woodcut from De Re Metallica printed in 1560, which was the the most famous study on all aspects of mining and metallurgy, and one of the first technological books of modern times.

 BOOK VI -But the largest machine of all those which draw water is the one which follows. First of all a reservoir is made in a timbered chamber; this reservoir is eighteen feet long and twelve feet wide and high. Into this reservoir a stream is diverted through a water-race or through the tunnel; it has two entrances and the same number of gates. Levers are fixed to the upper part of these gates, by which they can be raised and let down again, so that by one way the gates are opened and in the other way closed. Beneath the openings are two plank troughs which carry the water flowing from the reservoir, and pour it on to the buckets of the water-wheel, the impact of which turns the wheel. The shorter trough carries the water, which strikes the buckets that turn the wheel toward the reservoir, and the longer trough carries the water which strikes those buckets that turn the wheel in the opposite direction. The casing or covering of the wheel is made of joined boards to which strips are affixed on the inner side. The wheel itself is thirty-six feet in diameter, and is mortised to an axle, and it has, as I have already said, two rows of buckets, of which one is set the opposite way to the other, so that the wheel may be turned toward the reservoir or in the opposite direction. The axle is square and is thirty-five feet long and two feet thick and wide. Beyond the wheel, at a distance of six feet, the axle has four hubs, one foot wide and thick, each one of which is four feet distant from the next; to these hubs are fixed by iron nails as many pieces of wood as are necessary to cover the hubs, and, in order that the wood pieces may fit tight, they are broader on the outside and narrower on the inside; in this way a drum is made, around which is wound a chain to whose ends are hooked leather bags. The reason why a drum of this kind is made, is that the axle may be kept in good condition, because this drum when it becomes worn away by use can be repaired easily. Further along the axle, not far from the end, is another drum one foot broad, projecting two feet on all sides around the axle. And to this, when occasion demands, a brake is applied forcibly and holds back the machine; this kind of brake I have explained before. Near the axle, in place of a hopper, there is a floor with a considerable slope, having in front of the shaft a width of fifteen feet and the same at the back; at each side of it there is a stout post carrying an iron chain which has a large hook. Five men operate this machine; one lets down the doors which close the reservoir gates, or by drawing down the levers, opens the water-races; this man, who is the director of this machine, stands in a hanging cage beside the reservoir. When one bag has been drawn out nearly as far as the sloping floor, he closes the water gate in order that the wheel may be stopped; when the bag has been emptied he opens the other water gate, in order that the other set of buckets may receive the water and drive the wheel in the opposite direction. If he cannot close the water-gate quickly enough, and the water continues to flow, he calls out to his comrade and bids him raise the brake upon the drum and stop the wheel. Two men alternately empty the bags, one standing on that part of the floor which is in front of the shaft, and the other on that part which is at the back. When the bag has been nearly drawn up-of which fact a certain link of the chain gives warning-the man who stands on the one part of the floor, catches a large iron hook in one link of the chain, and pulls out all the subsequent part of the chain toward the floor, where the bag is emptied by the other man. The object of this hook is to prevent the chain, by its own weight, from pulling down the other empty bag, and thus pulling the whole chain from its axle and dropping it down the shaft. His comrade in the work, seeing that the bag filled with water has been nearly drawn out, calls to the director of the machine and bids him close the water of the tower so that there will be time to empty the bag; this being emptied, the director of the machine first of all slightly opens the other water-gate of the tower to allow the end of the chain, together with the empty bag, to be started into the shaft again, and then opens entirely the water-gates. When that part of the chain which has been pulled on to the floor has been wound up again, and has been let down over the shaft from the drum, he takes out the large hook which was fastened into a link of the chain. The fifth man stands in a sort of cross-cut beside the sump, that he may not be hurt, if it should happen that a link is broken and part of the chain or anything else should fall down; he guides the bag with a wooden shovel, and fills it with water if it fails to take in the water spontaneously. In these days, they sew an iron band into the top of each bag that it may constantly remain open, and when lowered into the sump may fill itself with water, and there is no need for a man to act as governor of the bags. Further, in these days, of those men who stand on the floor the one empties the bags, and the other closes the gates of the reservoir and opens them again, and the same man usually fixes the large hook in the link of the chain. In this way, three men only are employed in working this machine; or even-since sometimes the one who empties the bag presses the brake which is raised against the other drum and thus stops the wheel-two men take upon themselves the whole labour.


Georgius Agricola (1494-1555)

Agricola was a German Catholic, scholar and scientist. Known as “the father of mineralogy“, he was born at Glauchau in Saxony. His birth name was Georg Pawer (Bauer) and Agricola is the Latinised version of his name, by which he was known his entire adult life. Agricola, studied at Leipzig, Bologna and Padua and became town physician of the mining centre of Joachimsthal in Bohemia and physician at Chemnitz in Saxony from 1534 until his death. Living in mining regions all his life made it possible for him to study mining practices first hand and these direct observations made this series particularly valuable and effective.

The De Re Metallica embraces everything connected with the mining industry and metallurgical processes, including administration, prospecting, the duties of officials and companies and the manufacture of glass, sulphur and alum. The magnificent woodcut illustrations by Hans Rudolf Manuel Deutsch illustrate the different processes involved in mining and include mechanical engineering details such as the use of water-power, hauling, pumps, ventilation, blowing of furnaces and transport of ores.

Agricola made an important contribution to physical geology. He recognized the influence of water and wind on the shaping of the landscape and gave a clear account of of the order of the strata he saw in the mines. Writing on the origin of mountains, he descrivbes the eroding action of water as their cause with a perspicacity much in advance of his time.

The De Re Metallica was frequently reprinted and is said to have reached China in the seventeenth century. Interest in it was revived in the eighteenth century by Abraham Gottlieb Werner, and in 1912 it was translated into English by Herbert Hoover, afterwards President of the United States.

Choose currency

Exchange rates are only indicative. All orders will be processed in Australian dollars. The actual amount charged may vary depending on the exchange rate and conversion fees applied by your credit card issuer.



The List

Join our exclusive mailing list for first access to new acquisitions and special offers.